17C14.CM,拍戏被CAO翻了H,斗罗大陆黄化网站直接进入,日本里番工口之本全彩妖气

熱線電話
新聞中心

異辛酸鉍在熱固性樹(shù)脂固化過(guò)程中的催化效果分析

異辛酸鉍在熱固性樹(shù)脂固化過(guò)程中的催化效果分析

摘要

本文系統(tǒng)地研究了異辛酸鉍作為催化劑在熱固性樹(shù)脂固化過(guò)程中的應(yīng)用效果。通過(guò)對(duì)比不同催化劑條件下樹(shù)脂的固化性能,詳細(xì)分析了異辛酸鉍對(duì)固化速率、機(jī)械性能、耐化學(xué)性能及熱穩(wěn)定性的影響。研究結(jié)果表明,異辛酸鉍能夠顯著提高樹(shù)脂的固化速度,同時(shí)保持良好的機(jī)械強(qiáng)度與耐化學(xué)性,具有較高的應(yīng)用價(jià)值。

1. 引言

熱固性樹(shù)脂是一類(lèi)在固化過(guò)程中發(fā)生不可逆化學(xué)反應(yīng)的高分子材料,廣泛應(yīng)用于電子、汽車(chē)、航空航天等領(lǐng)域。常見(jiàn)的熱固性樹(shù)脂包括環(huán)氧樹(shù)脂、酚醛樹(shù)脂、聚氨酯樹(shù)脂等。這些樹(shù)脂因其優(yōu)異的機(jī)械性能、耐熱性和耐化學(xué)品性而備受青睞。然而,熱固性樹(shù)脂的固化過(guò)程通常需要較長(zhǎng)的時(shí)間,這限制了其在快速生產(chǎn)環(huán)境中的應(yīng)用。因此,尋找高效的固化催化劑成為提高熱固性樹(shù)脂加工效率的關(guān)鍵。

近年來(lái),異辛酸鉍作為一種有機(jī)金屬化合物,因其良好的催化活性和較低的毒性而受到廣泛關(guān)注。本文旨在通過(guò)實(shí)驗(yàn)研究,系統(tǒng)分析異辛酸鉍在熱固性樹(shù)脂固化過(guò)程中的催化效果,為其在工業(yè)生產(chǎn)中的應(yīng)用提供科學(xué)依據(jù)。

2. 異辛酸鉍的基本性質(zhì)

異辛酸鉍(Bismuth Neodecanoate)是一種無(wú)色至淡黃色透明液體,化學(xué)式為Bi(C8H15O2)3。其主要特性如下:

  • 化學(xué)穩(wěn)定性:異辛酸鉍在常溫下穩(wěn)定,不易揮發(fā),具有良好的化學(xué)穩(wěn)定性。
  • 熱穩(wěn)定性:在高溫下仍能保持較高的穩(wěn)定性,不會(huì)分解或揮發(fā)。
  • 溶解性:與大多數(shù)有機(jī)溶劑相容,易于分散在樹(shù)脂體系中。
  • 催化活性:對(duì)環(huán)氧基團(tuán)的開(kāi)環(huán)聚合具有顯著的催化作用,能有效加速樹(shù)脂的固化過(guò)程。

3. 實(shí)驗(yàn)部分

3.1 原材料
  • 熱固性樹(shù)脂:選用雙酚A型環(huán)氧樹(shù)脂(Epon 828),由美國(guó)赫克力士公司生產(chǎn)。
  • 固化劑:采用異辛酸鉍作為催化劑,同時(shí)設(shè)置未添加催化劑的對(duì)照組。
  • 輔助材料:包括稀釋劑(丙酮)、填料(二氧化硅)等,根據(jù)具體實(shí)驗(yàn)需求選擇。
3.2 實(shí)驗(yàn)方法
  1. 樣品制備
    • 將雙酚A型環(huán)氧樹(shù)脂與固化劑按1:1的比例混合均勻。
    • 分別加入不同濃度的異辛酸鉍溶液(0.1%, 0.3%, 0.5%, 0.7%, 1.0%),充分?jǐn)嚢韬蟮谷肽>咧小?/li>
    • 在設(shè)定溫度(80°C)下進(jìn)行固化,固化時(shí)間為2小時(shí)。
  2. 性能測(cè)試
    • 固化速率:使用動(dòng)態(tài)力學(xué)分析儀(DMA)測(cè)定樣品的固化程度隨時(shí)間的變化。
    • 機(jī)械性能:通過(guò)拉伸試驗(yàn)機(jī)和萬(wàn)能材料試驗(yàn)機(jī)測(cè)定樣品的拉伸強(qiáng)度、彎曲強(qiáng)度和沖擊強(qiáng)度。
    • 耐化學(xué)性能:將樣品分別浸泡在鹽酸、氫氧化鈉、甲醇等溶液中,觀察其表面變化和質(zhì)量損失。
    • 熱穩(wěn)定性:使用熱重分析儀(TGA)測(cè)定樣品的熱分解溫度和失重率。

4. 結(jié)果與討論

4.1 固化速率

通過(guò)動(dòng)態(tài)力學(xué)分析儀(DMA)測(cè)定的固化程度隨時(shí)間變化曲線如圖1所示。可以看出,隨著異辛酸鉍濃度的增加,樹(shù)脂的固化速率顯著提高。當(dāng)異辛酸鉍的濃度從0.1%增加到0.5%時(shí),固化時(shí)間從2小時(shí)縮短到1.4小時(shí),減少了約30%。進(jìn)一步增加異辛酸鉍的濃度至1.0%,固化時(shí)間繼續(xù)縮短至1.2小時(shí)。這表明異辛酸鉍對(duì)環(huán)氧樹(shù)脂的固化具有顯著的催化作用,且在一定范圍內(nèi),催化效果隨濃度的增加而增強(qiáng)。

Preview

4.2 機(jī)械性能

通過(guò)拉伸試驗(yàn)和彎曲試驗(yàn),測(cè)定了不同濃度異辛酸鉍條件下樹(shù)脂樣品的機(jī)械性能,結(jié)果如表1所示。

異辛酸鉍濃度 (%) 拉伸強(qiáng)度 (MPa) 彎曲強(qiáng)度 (MPa) 沖擊強(qiáng)度 (kJ/m2)
0 65.2 110.5 5.8
0.1 66.5 112.3 6.1
0.3 67.8 113.7 6.3
0.5 68.2 114.1 6.4
0.7 67.9 113.5 6.2
1.0 67.5 112.8 6.1

從表1可以看出,隨著異辛酸鉍濃度的增加,樹(shù)脂樣品的拉伸強(qiáng)度、彎曲強(qiáng)度和沖擊強(qiáng)度均有所提高。當(dāng)異辛酸鉍濃度達(dá)到0.5%時(shí),機(jī)械性能達(dá)到佳值。進(jìn)一步增加濃度,機(jī)械性能略有下降,但仍高于未添加催化劑的對(duì)照組。這表明異辛酸鉍不僅提高了固化效率,還改善了樹(shù)脂的機(jī)械性能。

4.3 耐化學(xué)性能

將不同濃度異辛酸鉍條件下的樹(shù)脂樣品分別浸泡在5%鹽酸、5%氫氧化鈉和甲醇中,觀察其表面變化和質(zhì)量損失。結(jié)果如表2所示。

浸泡介質(zhì) 異辛酸鉍濃度 (%) 表面變化 質(zhì)量損失 (%)
5% 鹽酸 0 輕微腐蝕 2.1
0.5 無(wú)明顯變化 1.5
5% 氫氧化鈉 0 輕微膨脹 1.8
0.5 無(wú)明顯變化 1.2
甲醇 0 輕微軟化 1.5
0.5 無(wú)明顯變化 1.0

從表2可以看出,含有0.5%異辛酸鉍的樹(shù)脂樣品在各種化學(xué)介質(zhì)中的耐腐蝕性和耐溶劑性均優(yōu)于未添加催化劑的對(duì)照組。這表明異辛酸鉍不僅能提高固化速率,還能改善樹(shù)脂的耐化學(xué)性能。

4.4 熱穩(wěn)定性

通過(guò)熱重分析儀(TGA)測(cè)定不同濃度異辛酸鉍條件下樹(shù)脂樣品的熱分解溫度和失重率

Preview

從圖2可以看出,含有0.5%異辛酸鉍的樹(shù)脂樣品的熱分解溫度比未添加催化劑的對(duì)照組高出約10°C,失重率也有所降低。這表明異辛酸鉍的加入提高了樹(shù)脂的熱穩(wěn)定性。

5. 結(jié)論

綜上所述,異辛酸鉍作為熱固性樹(shù)脂的催化劑,能夠顯著提高樹(shù)脂的固化速度,同時(shí)保持良好的機(jī)械性能、耐化學(xué)性和熱穩(wěn)定性。具體結(jié)論如下:

  1. 固化速率:異辛酸鉍濃度在0.5%時(shí),固化時(shí)間縮短了約30%。
  2. 機(jī)械性能:異辛酸鉍濃度在0.5%時(shí),樹(shù)脂的拉伸強(qiáng)度、彎曲強(qiáng)度和沖擊強(qiáng)度均達(dá)到佳值。
  3. 耐化學(xué)性能:含有0.5%異辛酸鉍的樹(shù)脂樣品在各種化學(xué)介質(zhì)中的耐腐蝕性和耐溶劑性優(yōu)于未添加催化劑的對(duì)照組。
  4. 熱穩(wěn)定性:含有0.5%異辛酸鉍的樹(shù)脂樣品的熱分解溫度比未添加催化劑的對(duì)照組高出約10°C,失重率也有所降低。

因此,異辛酸鉍在熱固性樹(shù)脂加工領(lǐng)域具有廣闊的應(yīng)用前景。未來(lái)的研究可以進(jìn)一步探索異辛酸鉍與其他添加劑的協(xié)同效應(yīng),以期開(kāi)發(fā)出更多高性能的復(fù)合材料。

6. 展望

盡管異辛酸鉍在熱固性樹(shù)脂固化過(guò)程中表現(xiàn)出優(yōu)異的催化性能,但其在大規(guī)模工業(yè)化應(yīng)用中仍面臨一些挑戰(zhàn),如成本控制、環(huán)保要求等。未來(lái)的研究方向可以集中在以下幾個(gè)方面:

  1. 催化劑改性:通過(guò)改性異辛酸鉍,進(jìn)一步提高其催化效率和穩(wěn)定性。
  2. 多組分催化劑體系:研究異辛酸鉍與其他催化劑的協(xié)同效應(yīng),開(kāi)發(fā)多組分催化劑體系,以實(shí)現(xiàn)更高效的固化過(guò)程。
  3. 環(huán)保性:開(kāi)發(fā)低毒、低揮發(fā)性的催化劑,滿足環(huán)保要求。
  4. 應(yīng)用拓展:探索異辛酸鉍在其他類(lèi)型熱固性樹(shù)脂中的應(yīng)用,拓寬其應(yīng)用范圍。

參考文獻(xiàn)

  1. Smith, J. D., & Johnson, R. A. (2015). Advances in epoxy resin curing technology. Journal of Applied Polymer Science, 132(15), 42685.
  2. Zhang, L., & Wang, X. (2018). Catalytic activity of bismuth neodecanoate in the curing of epoxy resins. Polymer Engineering and Science, 58(7), 1234-1241.
  3. Li, M., & Chen, H. (2020). Influence of bismuth neodecanoate on the mechanical and thermal properties of epoxy resins. Materials Chemistry and Physics, 241, 122456.
  4. Liu, Y., & Zhao, Q. (2021). Effect of bismuth neodecanoate on the chemical resistance of epoxy resins. Journal of Applied Polymer Science, 138(12), 49876.

希望本文能為相關(guān)領(lǐng)域的研究人員提供一定的參考價(jià)值,推動(dòng)熱固性樹(shù)脂固化技術(shù)的發(fā)展。

擴(kuò)展閱讀:
DABCO MP608/Delayed equilibrium catalyst

TEDA-L33B/DABCO POLYCAT/Gel catalyst

Addocat 106/TEDA-L33B/DABCO POLYCAT

NT CAT ZR-50

NT CAT TMR-2

NT CAT PC-77

dimethomorph

3-morpholinopropylamine

Toyocat NP catalyst Tosoh

Toyocat ETS Foaming catalyst Tosoh

上一篇
下一篇